Exercise 7.3.2

Find the general solutions to the following ODEs. Write the solutions in forms that are entirely real (i.e., that contain no complex quantities).

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}-2 y=0
$$

Solution

Because this is a linear homogeneous ODE and all the coefficients on the left side are constant, the solutions for it are of the form $y=e^{r t}$.

$$
y=e^{r t} \quad \rightarrow \quad y^{\prime}=r e^{r t} \quad \rightarrow \quad y^{\prime \prime}=r^{2} e^{r t} \quad \rightarrow \quad y^{\prime \prime \prime}=r^{3} e^{r t}
$$

Substitute these formulas into the ODE.

$$
r^{3} e^{r t}-2\left(r^{2} e^{r t}\right)+r e^{r t}-2\left(e^{r t}\right)=0
$$

Divide both sides by $e^{r t}$.

$$
r^{3}-2 r^{2}+r-2=0
$$

Solve for r.

$$
\begin{gathered}
(r-2)\left(r^{2}+1\right)=0 \\
(r-2)(r+i)(r-i)=0 \\
r=\{2,-i, i\}
\end{gathered}
$$

Three solutions to the ODE are $y=e^{2 t}$ and $y=e^{-i t}$ and $y=e^{i t}$. By the principle of superposition, the general solution is a linear combination of these three. Therefore,

$$
\begin{aligned}
y(t) & =C_{1} e^{2 t}+C_{2} e^{-i t}+C_{3} e^{i t} \\
& =C_{1} e^{2 t}+C_{2}[\cos (-t)+i \sin (-t)]+C_{3}(\cos t+i \sin t) \\
& =C_{1} e^{2 t}+C_{2}(\cos t-i \sin t)+C_{3}(\cos t+i \sin t) \\
& =C_{1} e^{2 t}+C_{2} \cos t-i C_{2} \sin t+C_{3} \cos t+i C_{3} \sin t \\
& =C_{1} e^{2 t}+\left(C_{2}+C_{3}\right) \cos t+\left(-i C_{2}+i C_{3}\right) \sin t \\
& =C_{1} e^{2 t}+C_{4} \cos t+C_{5} \sin t .
\end{aligned}
$$

